Efficient Estimation of the Robustness Region of Biological Models with Oscillatory Behavior
نویسندگان
چکیده
Robustness is an essential feature of biological systems, and any mathematical model that describes such a system should reflect this feature. Especially, persistence of oscillatory behavior is an important issue. A benchmark model for this phenomenon is the Laub-Loomis model, a nonlinear model for cAMP oscillations in Dictyostelium discoideum. This model captures the most important features of biomolecular networks oscillating at constant frequencies. Nevertheless, the robustness of its oscillatory behavior is not yet fully understood. Given a system that exhibits oscillating behavior for some set of parameters, the central question of robustness is how far the parameters may be changed, such that the qualitative behavior does not change. The determination of such a "robustness region" in parameter space is an intricate task. If the number of parameters is high, it may be also time consuming. In the literature, several methods are proposed that partially tackle this problem. For example, some methods only detect particular bifurcations, or only find a relatively small box-shaped estimate for an irregularly shaped robustness region. Here, we present an approach that is much more general, and is especially designed to be efficient for systems with a large number of parameters. As an illustration, we apply the method first to a well understood low-dimensional system, the Rosenzweig-MacArthur model. This is a predator-prey model featuring satiation of the predator. It has only two parameters and its bifurcation diagram is available in the literature. We find a good agreement with the existing knowledge about this model. When we apply the new method to the high dimensional Laub-Loomis model, we obtain a much larger robustness region than reported earlier in the literature. This clearly demonstrates the power of our method. From the results, we conclude that the biological system underlying is much more robust than was realized until now.
منابع مشابه
BMC Systems Biology
Background: Quantifying the robustness of biochemical models is important both for determining the validity of a natural system model and for designing reliable and robust synthetic biochemical networks. Several tools have been proposed in the literature. Unfortunately, multiparameter robustness analysis suffers from computational limitations. Results: A novel method for quantifying the robustn...
متن کاملEstimation of portfolio efficient frontier by different measures of risk via DEA
In this paper, linear Data Envelopment Analysis models are used to estimate Markowitz efficient frontier. Conventional DEA models assume non-negative values for inputs and outputs. however, variance is the only variable in these models that takes non-negative values. Therefore, negative data models which the risk of the assets had been used as an input and expected return was the output are uti...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملApplication of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملApplication of Soft Computing Methods for the Estimation of Roadheader Performance from Schmidt Hammer Rebound Values
Estimation of roadheader performance is one of the main topics in determining the economics of underground excavation projects. The poor performance estimation of roadheader scan leads to costly contractual claims. In this paper, the application of soft computing methods for data analysis called adaptive neuro-fuzzy inference system- subtractive clustering method (ANFIS-SCM) and artificial neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010